# THIELOCIN B3, A NOVEL ANTIINFLAMMATORY HUMAN GROUP II PHOSPHOLIPASE A<sub>2</sub> SPECIFIC INHIBITOR FROM ASCOMYCETES

## KAZUSHIGE TANAKA\*, SHIGERU MATSUTANI, AKIKO KANDA, Toshiyuki Kato and Tadashi Yoshida

Shionogi Research Laboratories, Shionogi & Co., Ltd., 12-4 Sagisu 5-chome, Fukushima-ku, Osaka 553, Japan

(Received for publication January 7, 1994)

Evidence accumulated to date suggests that extracellular group II phospholipase  $A_2$  (PLA<sub>2</sub>-II) is involved in the pathogenesis of inflammatory disease. During screening for PLA<sub>2</sub> inhibitors, we found a novel PLA<sub>2</sub> inhibitor named thielocin B3 in the culture broth of an ascomycetes. Thielocin B3 strongly inhibited human PLA<sub>2</sub>-II (IC<sub>50</sub>=0.076  $\mu$ M) in a reversible and noncompetitive manner (Ki=0.098  $\mu$ M), whereas it inhibited human group I PLA<sub>2</sub> only weakly (IC<sub>50</sub>=18  $\mu$ M). It also quenched the tryptophan fluorescence of *Naja mocambique* venom PLA<sub>2</sub>; almost 100% quenching being attained at a thielocin B3/enzyme molar ratio of 1.0. Its inhibitory activity toward human PLA<sub>2</sub>-II and *Naja mocambique* PLA<sub>2</sub> was markedly decreased by methylation of its two carboxyl groups, while the quenching observed for *Naja mocambique* PLA<sub>2</sub> was not altered. These results suggest that the two carboxyl groups do not participate in the binding of thielocin B3 to the enzyme, but play a crucial role in the PLA<sub>2</sub> inhibition. Furthermore, in the rat carrageenan-induced pleurisy model, thielocin B3 significantly reduced both exudate volume and PLA<sub>2</sub> activity in the exudate when coinjected with carrageenan.

Phospholipase  $A_2$  (PLA<sub>2</sub>) forms a diverse family of enzymes that catalyze the hydrolysis of sn-2 fatty acyl ester bond of glycerophospholipids<sup>1)</sup> and exists in both extracellular and intracellular forms<sup>2)</sup>. Much of the work on PLA<sub>2</sub> to date has focused on extracellular PLA<sub>2</sub>, because of its relative abundance in venoms and pancreatic juice<sup>3)</sup>. Extracellular PLA<sub>2</sub> can be classified into two types, group I (PLA<sub>2</sub>-I) and group II (PLA<sub>2</sub>-II), based on their primary structures<sup>4)</sup>. Mammalian PLA<sub>2</sub>-I is abundantly present in the pancreatic digestive secretion<sup>5)</sup>. On the other hand, mammalian PLA<sub>2</sub>-IIs are found in inflammatory regions, such as casein-induced peritoneal fluid in rats<sup>6)</sup>, carrageenan-induced pleural exudate in rats<sup>7)</sup> and synovial fluid of patients with rheumatoid arthritis<sup>8)</sup>. In addition, some inflammatory cytokines and lipopolysaccharide dramatically increased PLA<sub>2</sub>-II secretion in several tissues of rat through enhancement of gene transcription<sup>9,10)</sup>. These findings strongly implicate the importance of mammalian PLA<sub>2</sub>-II in





promoting inflammatory processes. In fact, some studies have shown the pro-inflammatory activities of  $PLA_2$ -II<sup>11~13</sup>.

Recently, we isolated thielocin A1 $\beta$ , a novel PLA<sub>2</sub>-II specific inhibitor, from the fermentation broth of *Thielavia terricola* RF-143<sup>14</sup>). It inhibited rat PLA<sub>2</sub>-II very strongly with an IC<sub>50</sub> of 0.0033  $\mu$ M, but its inhibitory activity toward human PLA<sub>2</sub>-II was rather weak with an IC<sub>50</sub> of 12  $\mu$ M<sup>15</sup>). In further screening, we isolated several analogues of thielocin A1 $\beta$  from the same fermentation broth. Among them, thielocin B3 (Fig. 1) showed the strongest inhibitory activity toward human PLA<sub>2</sub>-II. The present study investigates the mechanism of thielocin B3 inhibition of human PLA<sub>2</sub>-II and the anti-inflammatory effect of thielocin B3 in rat carrageenan-induced pleurisy.

#### Materials and Methods

Materials

Thielocin A1 $\beta$  and B3 were prepared as previously reported<sup>14)</sup>. *p*-Bromophenacyl bromide (*p*-BPB), 1- $\alpha$ -phosphatidylethanolamine (from egg yolk) and *Naja mocambique mocambique* PLA<sub>2</sub> (pI 9.6) were purchased from Sigma (St. Louis, MO). L-3-Phosphatidylethanolamine, 1-palmitoyl-2-[1-<sup>14</sup>C]linoleoyl (2.18 GBq/mmol) was purchased from Amersham Corp. Human PLA<sub>2</sub>-I was purified from human pancreatic juice<sup>16)</sup>. Human PLA<sub>2</sub>-II was isolated from rheumatoid arthritic synovial fluid<sup>17)</sup>. Rat PLA<sub>2</sub>-I was isolated from rat pancreas homogenate<sup>18)</sup>. Rat PLA<sub>2</sub>-II was purified from rat platelets<sup>19)</sup>. *Naja mocambique mocambique* PLA<sub>2</sub> (pI 9.6) purchased from Sigma was further purified as described previously<sup>20)</sup>. Each of the purified PLA<sub>2</sub>s showed a single band of approximately 14 kDa on SDS-polyacrylamide gel electrophoresis (Coomassie brilliant blue staining). Autoclaved [<sup>3</sup>H]oleic acid-labeled *Escherichia coli* (200,000 cpm containing approximately 1.0 nmol of phosphatidylethanolamine and phosphatidylglycerol) was obtained by the procedure of DAVIDSON *et al.*<sup>21)</sup>. All other reagents were of analytical grade or better.

### Assay of PLA<sub>2</sub> Activity

PLA<sub>2</sub> activity was measured as described previously<sup>22</sup>). The substrate was prepared by diluting 1-palmitoyl-2-[1-<sup>14</sup>C]linoleoyl phosphatidylethanolamine with L- $\alpha$ -phosphatidylethanolamine to the specific activity of 2,000 dpm/nmol. The reaction was started by addition of the enzyme. The amount of PLA<sub>2</sub>s was adjusted to linear kinetics for quantitation, *i.e.*, less than 20% hydrolysis of the substrate. Thielocin B3 and A1 $\beta$  were added to the assay tubes as a DMSO solution (2% of the final volume), using a DMSO-enzyme control. Control experiments showed that DMSO at this concentration had no effect on enzymatic activities. Inhibition is expressed as the percent of enzyme control. IC<sub>50</sub> values were determined graphically from plots of percent inhibition versus log concentration of inhibitors.

#### Fluorescence Measurements

The tryptophan fluorescence was measured in a Hitachi F-3000 fluorescence spectrophotometer. The sample in a total volume of 2.0 ml contained 14 nmol of *Naja mocambique mocambique* PLA<sub>2</sub>, 100 mM Tris-HCl buffer (pH 7.4), 3 mM CaCl<sub>2</sub> and the indicated concentrations of thielocin B3 was excited at 280 nm and emission was measured at 344 nm.

## Carrageenan-induced Pleurisy in Rats and PLA<sub>2</sub> Activity in Pleural Exudate.

Male 8- to 10- week-old Sprague-Dawley rats (weighing  $290 \sim 370$  g) were slightly anesthetized with ether and injected with 0.5 ml of 0.2% carrageenan, dissolved in sterile saline solution, into the right pleural cavity through a blunt-edged 25-gauge needle. Five hours after carrageenan injection, the animals were sacrificed by exsanguination under ether anesthesia. The pleural exudate was harvested after opening the chest, and its volume was measured. The exudate containing blood was removed. The cavity was then washed with 1 ml of sterile saline. This wash was combined with the exudate to measure PLA<sub>2</sub> activity. The combined exudate was centrifuged at  $2,000 \times g$  for 15 minutes at 4°C immediately after collection to

remove cells, and the supernatants were stored at  $-20^{\circ}$ C until analysis. To assay PLA<sub>2</sub> activity in the pleural exudate, [<sup>3</sup>H]oleic acid-labeled *Escherichia coli* was used as substrate<sup>7)</sup>.

#### Results

### Inhibition of Human Extracellular PLA<sub>2</sub>s by Thielocin B3

Thielocin B3 inhibited human PLA<sub>2</sub>-II very strongly in a dose-dependent manner with an IC<sub>50</sub> of 0.076  $\mu$ M (Fig. 2A), whereas the inhibition by thielocin A1 $\beta$  was 160 times weaker (IC<sub>50</sub> of 12  $\mu$ M) than that caused by thielocin B3. (Fig. 2B). On the other hand, thielocin B3 and thielocin A1 $\beta$  showed weak inhibitory activity against human PLA<sub>2</sub>-I with IC<sub>50</sub>s of 18  $\mu$ M and 140  $\mu$ M, respectively. Thus, thielocin B3 inhibition of human PLA<sub>2</sub>-II was 240 times stronger than that of human PLA<sub>2</sub>-I. In addition, the group II PLA<sub>2</sub> specific inhibitory activity of thielocin B3 was also conserved in rat extracellular PLA<sub>2</sub>s (for rat PLA<sub>2</sub>-I; IC<sub>50</sub>=2.8  $\mu$ M, for rat PLA<sub>2</sub>-II; IC<sub>50</sub>=0.012  $\mu$ M). The inhibition of human PLA<sub>2</sub>s by thielocin B3 and thielocin A1 $\beta$  was independent of Ca<sup>2+</sup> and substrate concentration (data not shown). Furthermore, double reciprocal plot showed that thielocin B3 (Fig. 3A) and thielocin A1 $\beta$  (Fig. 3B) behaved kinetically as noncompetitive inhibitors for human PLA<sub>2</sub>-II with mean *Ki* of 0.098 and 12 $\mu$ M, respectively. Thus, thielocin B3 showed 120 times higher affinity for human PLA<sub>2</sub>-II than thielocin A1 $\beta$ .

Reversibility of Thielocin B3 Inhibition against Human PLA<sub>2</sub>-II

The reversible nature of thielocin B3 was confirmed by the dilution method of LISTER *et al.* (Table 1)<sup>23)</sup>. After human PLA<sub>2</sub>-II was preincubated with thielocin B3 (37 °C, 20 minutes) at 0.3  $\mu$ M, a concentration high enough to sufficiently reduce the enzymatic activity, a portion was removed and diluted 30-fold to 0.01  $\mu$ M with the assay mixture. Slight inhibition was observed, indicating reversible inhibition. Had the inhibition been irreversible, the rate would have been inhibited at least 89%, corresponding to an inhibitor concentration of 0.3  $\mu$ M. A similar result was observed when thielocin B3 was used at a concentration of





The activities of the enzyme control (*i.e.* 100%) were from 4,000 to 5,900 nmol/minute/mg protein of human  $PLA_2$ -I ( $\odot$ ) and from 6,100 to 8,200 nmol/minute/mg protein of human  $PLA_2$ -II ( $\odot$ ). Inhibition is expressed as the percent of enzyme control. Data points are the means of three independent experiments, each performed in duplicate and corrected for no enzymatic hydrolysis (0.5% or less in all experiments). The SD value was 8% or less than the mean for each data point.

Fig. 3. Noncompetitive inhibition of human group II phospholipase  $A_2$  by thielocin B3 (panel A) and thielocin A1 $\beta$  (panel B).



Double reciprocal plot of human PLA<sub>2</sub>-II activity toward phosphatidylethanolamine in the presence of thielocin B3  $\{0.1 \, \mu M (\Delta), 0.3 \, \mu M (\Delta); \text{ panel } A\}$  and thielocin A1 $\beta$   $\{5 \, \mu M (\Box), 15 \, \mu M (\Xi); \text{ panel } B\}$  or absence of inhibitor ( $\bullet$ ). Standard assay conditions were employed and the lines were drawn on the basis of regression analysis.

Table 1. Distinction between reversible and irreversible inhibition for thielocin B3 and *p*-bromophenacyl bromide (*p*-BPB).

| Compound     | Concentration (µM)         |                    | Phospholipase $A_2$ activity (% of control) |                      |                                   |
|--------------|----------------------------|--------------------|---------------------------------------------|----------------------|-----------------------------------|
|              | Preincubation <sup>a</sup> | Assay <sup>b</sup> | Predicted<br>irreversible                   | Predicted reversible | Experimentally <sup>°</sup> found |
| Thielocin B3 | 0.3<br>0.9                 | 0.01<br>0.03       | 11.4<br>4.0                                 | 71.2<br>48.7         | $71.5 \pm 10.3 \\ 37.4 \pm 5.1$   |
| p-BPB        | 300                        | 10                 | 3.0                                         | 72.5                 | $2.4 \pm 1.3$                     |

<sup>a</sup> Human PLA<sub>2</sub>-II was preincubated with inhibitor at the designated concentration for 20 minutes at 37°C.

<sup>b</sup> Inhibitor concentration after dilution for assay.

<sup>c</sup> Results are mean  $\pm$  SD of triplicate determinations, each performed in triplicate.

 $0.9 \,\mu$ M during preincubation and then was diluted to  $0.03 \,\mu$ M during the assay. On the other hand, *p*-BPB, a reputed irreversible PLA<sub>2</sub> inhibitor, showed similar inhibitory activity before and after dilution, indicating irreversible inhibition.

# Effect of Thielocin B3 on the Fluorescence

## Emission of Snake Venom PLA<sub>2</sub>

Direct interaction of thielocin B3 with snake venom PLA<sub>2</sub> (*Naja mocambique*) was examined by monitoring the tryptophan fluorescence of the enzyme in the presence and absence of thielocin B3. Thielocin B3 quenched the relative fluorescence of  $7.2 \,\mu$ M snake venom PLA<sub>2</sub> at 344 nm in a dosedependent manner (Fig. 4). Approximately 100% of the fluorescence was quenched when the molar ratio of thielocin B3/enzyme was 1.0. Fig. 4. Fluorescence of the snake venom (*Naja* mocambique mocambique) PLA<sub>2</sub> as a function of the concentration of thielocin B3.



Samples were excited at 280 nm and emission was measured at 344 nm. Fluorescence of the enzyme alone = 100%. The values indicate averages  $\pm$  SD (n=3).

| <b>C</b>         |              |                            | Inhibition (IC <sub>50</sub> ; $\mu$ M) |                              |  |
|------------------|--------------|----------------------------|-----------------------------------------|------------------------------|--|
| Compound         |              | Human PLA <sub>2</sub> -II | Snake venom PLA <sub>2</sub>            | Snake venom PLA <sub>2</sub> |  |
| Thielocin B3     | (a)          | 0.074                      | 0.0045                                  | 1.6                          |  |
| -monomethylester | (b)          | 0.20                       | 0.032                                   | 5.2                          |  |
| -monomethylester | (c)          | 0.28                       | 0.31                                    | 5.2                          |  |
| -dimethylester   | ( <b>d</b> ) | 51                         | >100                                    | 7.6                          |  |

Table 2. Comparison of PLA<sub>2</sub> inhibition and interaction by thielocin B3 methyl ester derivatives.

Table 3. Effects of thielocin B3, indomethacin and dexamethasone on exudate volume and  $PLA_2$  activity at 5 hours after the intrapleural injection of carrageenan in rats.

| Drug                       | Dose<br>(mg/kg) | Exudate volume<br>(ml) | PLA <sub>2</sub> activity<br>(pmol/minute/ml) |
|----------------------------|-----------------|------------------------|-----------------------------------------------|
| Control                    |                 | 1.99 ±0.14             | $6.62 \pm 0.61$                               |
|                            | ☐ 1.0           | $1.60 \pm 0.07*$       | $2.22 \pm 0.22$ **                            |
| Thielocin B3 <sup>a</sup>  | ]               | (80±4)°                | $(34 \pm 3)$                                  |
|                            | 3.0             | $1.15 \pm 0.05 **$     | $0.76 \pm 0.60 **$                            |
|                            | _               | $(58 \pm 3)$           | (12 <u>+</u> 9)                               |
| Indomethacin <sup>a</sup>  | 1.0             | $1.08 \pm 0.09 **$     | $7.36 \pm 0.54$                               |
|                            |                 | $(54 \pm 5)$           | $(111 \pm 8)$                                 |
| Dexamethasone <sup>b</sup> | 0.1             | $0.60 \pm 0.12$ **     | $7.94 \pm 0.47$                               |
|                            |                 | $(30 \pm 6)$           | $(120 \pm 7)$                                 |

<sup>a</sup> Thielocin B3 and indomethacin were administered intrapleurally with carrageenan.

<sup>b</sup> Dexamethasone was administered per os 1 hour before the carrageenan injection.

<sup>c</sup> The numbers in the parentheses express the percentage of the control group. Each value represents the mean  $\pm$  SEM obtained from five to six animals.

\* P<0.05, \*\* P<0.01.

To explore in more detail the inhibitory mechanism of thielocin B3 on PLA<sub>2</sub>, we examined the effect of thielocin B3 methyl ester derivatives (see Fig. 1) on human PLA<sub>2</sub>-II. Two thielocin B3 monomethyl esters (**b**, **c**) and thielocin B3 dimethyl ester (**d**) showed inhibitory activity against human PLA<sub>2</sub>-II. However, the dose required for 50% inhibition increased on methylation;  $0.20 \,\mu$ M and  $0.28 \,\mu$ M for thielocin B3 monomethyl esters (**b** and **c**), and 51  $\mu$ M for thielocin B3 dimethyl ester (**d**). Thus, thielocin B3 showed a marked decrease (*ca.* 690 times) of its inhibitory activity against human PLA<sub>2</sub>-II on dimethylation. Similar results were obtained with *Naja mocambique* venom PLA<sub>2</sub> (Table 2). On the other hand, quenching of relative fluorescent intensity of *Naja mocambique* venom PLA<sub>2</sub> by thielocin B3 was not markedly altered on methylation (Table 2).

# Effect of Thielocin B3 on Exudate Volume and PLA<sub>2</sub> Activity in Rat Carrageenan-Induced Pleurisy

Recently, we have reported that PLA<sub>2</sub>-II activity in the exudate of pleural cavity was increased up to 24 hours after the intrapleural injection of carrageenan. In this model, thielocin A1 $\beta$  correspondingly reduced both exudate volume and PLA<sub>2</sub>-II activity in the exudate in a dose-dependent manner when coinjection with carrageenan<sup>7</sup>). Thielocin B3 had the maximal inhibitory activity among the members against human PLA<sub>2</sub>-II, and this led us to examine the effect of thielocin B3 on the volume of pleural exudate in rat carrageenan-induced pleurisy (Table 3). At 5 hours after the injection of carrageenan, the exudate volume in the pleural cavity was dose-dependently decreased by thielocin B3 in a significant manner to  $58 \pm 3\%$  (p < 0.01) at 3 mg/kg,  $80 \pm 4\%$  (p < 0.05) at 1 mg/kg. In addition, thielocin B3 significantly

reduced the PLA<sub>2</sub>-II activity in the pleural exudate dose-respondingly to  $12\pm9\%$  at 3 mg/kg and  $34\pm3\%$  at 1 mg/kg. For reducing the exudate volume, both indomethacin, a cyclooxygenase inhibitor, and dexamethasone, a steroidal antiinflammatory drug, were more potent than thielocin B3. However, neither indomethacin nor dexamethasone administration resulted in significant reduction of the PLA<sub>2</sub>-II activity in the pleural exudate.

#### Discussion

These results demonstrated that thielocin B3, a novel PLA<sub>2</sub> inhibitor isolated from fungi, inhibits both human PLA<sub>2</sub>-I and PLA<sub>2</sub>-II in a dose-dependent manner. In addition, the inhibitory activity of thielocin B3 is rather specific against human PLA2-II (Fig. 2). Recently, human PLA2-II enriched in rheumatoid synovial fluid was purified from human platelets, and its gene was cloned and overexpressed<sup>24,25</sup>). Cloning and sequencing showed that the primary structure of human PLA<sub>2</sub>-II has about 35% homology with that of human pancreatic PLA<sub>2</sub>, which belongs to group I PLA<sub>2</sub>. However, the sequence of human PLA2-II preserves the core of residues found to be invariant or highly conserved among extracellular PLA<sub>2</sub>s<sup>26)</sup>. Furthermore, the X-ray crystal structures of human PLA<sub>2</sub>-II in the presence and absence of a transition state analogue, L-1-O-octyl-2-heptylphosphonyl-sn-glycero-3-phosphoethanolamine, have been reported<sup>27,28</sup>. Scott *et al.* reported that the backbone conformation of the homologous core in the inhibited form of human PLA<sub>2</sub>-II is virtually superimposable on that found in the crystal structures of the pancreatic PLA<sub>2</sub>. On the contrary, the conformation of the homologous core in the uninhibited crystal form of human PLA2-II differs slightly from that described for other enzymes. The main contributor to this change is the amino-terminal helix, which provides side chains to the substrate-binding site and forms a substantial portion of the interfacial recognition surface<sup>28)</sup>. Whether thielocin B3 interacts with this site remains to be clarified, we are now conducting further studies to determine the structure of the complex between human PLA<sub>2</sub>-II and thielocin B3.

In a recent paper<sup>15</sup>), we reported the inhibitory mechanism of rat PLA<sub>2</sub>-II by thielocin A1 $\beta$ . It exhibits extremely strong inhibitory activity with an IC<sub>50</sub> of 0.0033  $\mu$ M. However, against human PLA<sub>2</sub>-II, it shows rather weak activity with an IC<sub>50</sub> of 12  $\mu$ M. It is noteworthy that thielocin B3 exhibits strong inhibitory activity against human PLA<sub>2</sub>-II (IC<sub>50</sub>=0.076  $\mu$ M). Furthermore, the double reciprocal plot shows that both thielocin B3 and thielocin A1 $\beta$  behave kinetically as noncompetitive inhibitors for human PLA<sub>2</sub>-II with *Ki* of 0.098  $\mu$ M and 12  $\mu$ M, respectively (Fig. 3). Therefore, thielocin B3 has 120 times higher affinity for human PLA<sub>2</sub>-II than thielocin A1 $\beta$ . In addition, the ability of thielocin B3 to reversibly inhibit human PLA<sub>2</sub>-II was confirmed using the dilution method according to LISTER *et al.*<sup>23)</sup> (Table 1). These results distinguish thielocin B3 from agents such as manoalide and *p*-BPB, which inhibit PLA<sub>2</sub> by covalent modifications of lysine and histidine residues, respectively<sup>29,30)</sup>.

Direct, but non-covalent, interactions of inhibitory agents that modulate the structure of PLA<sub>2</sub> have been described in only rare instances. Several non-covalent PLA<sub>2</sub> inhibitors were examined for their direct interaction with the enzyme by the fluorescent method, and in this study, venom or pancreatic PLA<sub>2</sub> was used because of enzyme availability. FRANSON and ROSENTHAL<sup>31</sup> reported that PGBx, oligomers of PGB<sub>1</sub>, directly interacted with *Naja mocambique* PLA<sub>2</sub> and 50% quenching was noted with a molar ratio of PGBx/enzyme of 1.5. In our experiments, approximately 100% of the fluorescence of *Naja mocambique* PLA<sub>2</sub> was quenched with the molar ratio of thielocin B3/enzyme at 1.0 (Fig. 4). These observations indicated that inhibition of extracellular PLA<sub>2</sub> by thielocin B3 may result from direct interaction with the enzyme.

BALLOU and CHEUNG<sup>32)</sup> reported that unsaturated fatty acids inhibit human PLA<sub>2</sub>-II. Methylation of unsaturated fatty acids caused complete loss of inhibitory activity, while subsequent demethylation restored it, suggesting that a free carboxyl group is necessary. As thielocin B3 possesses two carboxyl groups at both ends, we examined the effect of two monomethyl esters and a dimethyl ester of thielocin B3 on human PLA<sub>2</sub>-II (Table 2). The inhibitory activity of thielocin B3 decreased with methylation and markedly decreased with dimethylation (690 times). On the other hand, quenching of the relative fluorescent intensity of *Naja mocambique* PLA<sub>2</sub> by thielocin B3 was not markedly altered by methylation. These results indicate that the two carboxyl groups of thielocin B3 may not participate in the interaction with the enzyme, but play a crucial role in the  $PLA_2$  inhibition.

Several investigators reported that inactivation of purified PLA<sub>2</sub> with p-BPB before injection resulted in attenuation of the subsequent inflammatory reaction<sup>11</sup>. We recently found that in the rat carrageenan-induced pleurisy model, thielocin A1 $\beta$  correspondingly reduced both exudate volume and PLA<sub>2</sub>-II activity in the pleural exudate in a dose-dependent manner when coinjected with carrageenan. These results suggest that thielocin A1 $\beta$  shows antiinflammatory activity due to inhibition of PLA<sub>2</sub>-II activity<sup>7)</sup>. However, thielocin A1 $\beta$  showed rather weak inhibitory activity against human PLA<sub>2</sub>-II (IC<sub>50</sub> = 12  $\mu$ M) as compared to rat PLA<sub>2</sub>-II (IC<sub>50</sub>=0.0033  $\mu$ M). On the other hand, thielocin B3 showed extremely strong inhibition activity against both human PLA<sub>2</sub>-II (IC<sub>50</sub>= $0.074 \,\mu$ M) and rat PLA<sub>2</sub>-II (IC<sub>50</sub>= $0.012 \,\mu$ M). Interestingly, thielocin B3 administered intrapleurally at a dose of 3.0 mg/kg (Table 3) and intraperitoneally at a dose of 50 mg/kg (unpublished data) decreased the exudate volume in the pleural cavity to 58 + 3%and  $66 \pm 9\%$ , respectively. NAKANO and ARITA reported<sup>33</sup> that intravenously injection of endotoxin in rat increased both PLA<sub>2</sub>-II activity in the plasma and the levels of PLA<sub>2</sub>-II mRNA in the several tissues (aorta, spleen, lung and thymus) at 24 hours after endotoxin challenge. Moreover, accumulation of PLA<sub>2</sub>-II mRNA in the tissues of endotoxin-treated rats was suppressed by dexamethasone administration. Hence, it may be possible that PLA2-II activity in that pleural exudate is reduced by administration of dexamethasone. Nevertheless, dexamethasone did not significantly decrease the PLA2-II activity in the pleural exudate, in spite of it remarkably reduced the exudate volume in the pleural cavity at 5 hours after the injection of carrageenan (Table 3). Therefore, it may take longer period (over 5 hours) to reduce the PLA2-II activity in pleural exudate by dexamethasone administration in the rat carrageenan-induced pleurisy model.

In conclusion, thielocin B3 showed the specific inhibitory activity against human  $PLA_2$ -II and it also showed reduction of exudate volume in the rat carrageenan-induced pleurisy model. Therefore, further studies are now in progress to investigate the antiinflammatory activity of thielocin B3 and the involvement of  $PLA_2$ -II in the pathogenesis of rat carrageenan-induced pleurisy.

#### Acknowledgments

We wish to thank Professor KEIZO INOUE, University of Tokyo, for the generous supply of the anti-rat platelet derived  $PLA_2$  monoclonal antibody.

#### References

- 1) DENNIS, E. A.: Phospholipases. In The Enzymes. Vol. 16. Ed., P. D. BOYER, pp. 307 ~ 353, Academic Press, 1983
- 2) VAN DEN BOSCH, H.: Intracellular phospholipase A. Biochim. Biophys. Acta 604: 191~246, 1980
- VADAS, P. & W. PRUZANSKI: Biology of disease. Role of secretory phospholipase A<sub>2</sub> in the pathobiology of disease. Lab. Invest. 55: 391~404, 1986
- HEINRIKSON, R. L.; E. T. KRUEGER & P. S. KEIM: Amino acid sequence of phospholipase A<sub>2</sub>-α from the venom of crotalus adamanteus. A new classification of phospholipase A<sub>2</sub> based upon structural determinants. J. Biol. Chem. 252: 4913~4921, 1977
- 5) OHARA, O.; M. TAMAKI, E. NAKAMURA, Y. TSURUTA, Y. FUJII, M. SHIN, H. TERAOKA & M. OKAMOTO: Dog and rat pancreatic phospholipase A<sub>2</sub>: Complete amino acid sequences deduced from complementary DNAs. J. Biochem. 99: 733~739, 1986
- CHANG, H. W.; I. KUDO, M. TOMITA & K. INOUE: Purification and characterization of extracellular phospholipase A<sub>2</sub> from peritoneal cavity of caseinate-treated rat. J. Biochem. 102: 147~154, 1987
- TANAKA, K.; T. KATO, K. MATSUMOTO & T. YOSHIDA: Antiinflammatory action of thielocin A1β, a group II phospholipase A<sub>2</sub> specific inhibitor, in rat carrageenan-induced pleurisy. Inflammation 17: 107~119, 1993
- PRUZANSKI, W., K. SCOTT, G. SMITH, I. RAJKOVIC, E. STEFANSKI & P. VADAS: Enzymatic activity and immunoreactivity of extracellular phospholipase A<sub>2</sub> in inflammatory synovial fluids. Inflammation 16: 451~457, 1992
- NAKANO, T.; O. OHARA, H. TERAOKA & H. ARITA: Group II phospholipase A<sub>2</sub> mRNA synthesis is stimulated by two distinct mechanism in rat vascular smooth muscle cells. FEBS Lett. 261: 171~174, 1990
- OKA, S. & H. ARITA: Inflammatory factors stimulate expression of group II phospholipase A<sub>2</sub> in rat cultured astrocytes. Two distinct pathways of the gene expression. J. Biol. Chem. 266: 9956~9960, 1991

- VISHWANATH, B. S.; A. A. FAWZY & R. C. FRANZON: Edema-inducing activity of phospholipase A<sub>2</sub> purified from human synovial fluid and inhibition by aristolochic acid. Inflammation 12: 549 ~ 561, 1988
- VADAS, P.; W. PRUZANSKI, J. KIM & V. FORNASIER: The proinflammatory effect of intra-articular injection of soluble human and venom phospholipase A<sub>2</sub>. Am. J. Pathol. 134: 807~811, 1989
- 13) BOMALASKI, J. S.; P. LAWTON & J. L. BROWNING: Human extracellular recombinant phospholipase A<sub>2</sub> induces an inflammatory response in rabbit joints. J. Immunol. 146: 3904~3910, 1991
- 14) YOSHIDA, T.; S. NAKAMOTO, R. SAKAZAKI, K. MATSUMOTO, Y. TERUI, T. SATO H. ARITA, S. MATSUTANI, K. INOUE & I. KUDO: Thielocins A1 $\alpha$  and A1 $\beta$ , novel phospholipase A<sub>2</sub> inhibitors from ascomycetes. J. Antibiotics 44: 1467~1470, 1991
- 15) ΤΑΝΑΚΑ, Κ.; S. MATSUTANI, K. MATSUMOTO & T. YOSHIDA: A novel type of phospholipase  $A_2$  inhibitor, thielocin A1β, and mechanism of action. J. Antibiotics 45: 1071~1078, 1992
- 16) NISHUJMA, J.; M. OKAMOTO, M. OGAWA, G. KOSAKI & T. YAMANO: Purification and characterization of human pancreatic phospholipase A<sub>2</sub> and development of a radioimmunoassay. J. Biochem. 94: 137~147, 1983
- 17) KANDA, A.; T. ONO, N. YOSHIDA, H. TOJO & M. OKAMOTO: The primary structure of a membrane-associated phospholipase A<sub>2</sub> from human spleen. Biochem. Biophys. Res. Commun. 163: 42~48, 1989
- 18) ONO, T.; H. TOJO, K. INOUE, H. KAGAMIYAMA, T. YAMAMOTO & M. OKAMOTO: Rat pancreatic phospholipase A<sub>2</sub>: Purification, characterization, and N-terminal amino acid sequence. J. Biochem. 96: 785~792, 1984
- MURAKAMI, M.; I. KUDO, Y. NATORI & K. INOUE: Immunochemical detection of 'platelet type' phospholipase A2 in rat. Biochim. Biophys. Acta 1043: 34~42, 1990
- 20) KANDA, A.; M. TAMAKI, E. NAKAMURA, H. TERAOKA & N. YOSHIDA: Characterization of recombinant human and rat pancreatic phospholipase A<sub>2</sub> secreted from *Saccharomyces cerevisiae*: difference in proteolytic processing. Biochim. Biophys. Acta 1171: 1~10, 1992
- 21) DAVIDSON, F. F.; E. A. DENNIS, M. POWELL & J. R. GLENNEY, Jr.: Inhibition of phospholipase A<sub>2</sub> by "lipocortins" and calpactins. An effect of binding to substrate phospholipids. J. Biol. Chem. 262: 1698~1705, 1987
- TANAKA, K.; H. ITAZAKI & T. YOSHIDA: Cinatrins, a novel family of phospholipase A<sub>2</sub> inhibitors. II. Biological activities. J. Antibiotics 45: 50~55, 1992
- 23) LISTER, M. D.; K. B. GLASER, R. J. ULEVITCH & E. A. DENNIS: Inhibition studies on the membrane-associated phospholipase A<sub>2</sub> in vitro and prostaglandin E<sub>2</sub> production in vivo of macrophage-like P388D<sub>1</sub> cell. J. Biol. Chem. 264: 8520~8528, 1989
- 24) KRAMER, R. M.; C. HESSION, B. JOHANSEN, G. HAYES, P. MCGRAY, E. P. CHOW, R. TIZARD & R. B. PEPINSKI: Structure and properties of a human non-pancreatic phospholipase A<sub>2</sub>. J. Biol. Chem. 264: 5768~5775, 1989
- 25) SEILHAMER, J. J.; W. PRUZANSKI, P. VADAS, S. PLANT, J. A. MILLER, J. KLOSS & L. K. JOHNSON: Cloning and recombinant expression of phospholipase A<sub>2</sub> present in rheumatoid arthritic synovial fluid. J. Biol. Chem. 264: 5335 ~ 5338, 1989
- 26) KRAMER, R. M.; B. JOHANSEN, C. HESSION & R. B. PEPINSKY: Structure and properties of a secretable phospholipase A<sub>2</sub> from human platelets. Adv. Exp. Med. Biol. 275: 35 ~ 53, 1990
- 27) WERY, J.-P.; R. W. SCHEVITZ, D. K. CLAWSON, J. L. BOBBITT, E. R. DOW, G. GAMBOA, T. GOODSON, Jr., R. B. HERMANN, R. M. KRAMER, D. B. MCCLURE, E. D. MIHELICH, J. E. PUTNAM, J. D. SHARP, D. H. STARK, C. TEATER, M. W. WARRICK & N. D. JONES: Structure of recombinant human rheumatoid arthritic synovial fluid phospholipase A<sub>2</sub> at 2.2 Å resolution. Nature 352: 79~82, 1991
- 28) SCOTT, D. L.; S. P. WHITE, J. L. BROWNING, J. J. ROSA, M. H. GELB & P. B. SIGLER: Structures of free and inhibited human secretory phospholipase A<sub>2</sub> from inflammatory exudate. Science 254: 1007~1010, 1991
- 29) LOMBARDO, D. & E. A. DENNIS: Cobra venom phospholipase A<sub>2</sub> inhibition by manoalide. A novel type of phospholipase inhibitor. J. Biol. Chem. 260: 7234~7240, 1985
- 30) KYGER, E. M. & R. C. FRANSON: Nonspecific inhibition of enzymes by p-bromophenacyl bromide. Inhibition of human platelet phospholipase C and modification of sulfhydryl groups. Biochim. Biophys. Acta 794: 96~103, 1984
- 31) FRANSON, R. C. & M. D. ROSENTHAL: Oligomers of prostaglandin B<sub>1</sub> inhibit in vitro phospholipase A<sub>2</sub> activity. Biochim. Biophys. Acta 1006: 272~277, 1989
- 32) BALLOU, L. R. & W. Y. CHEUNG: Inhibition of human platelet phospholipase A<sub>2</sub> activity by unsaturated fatty acids. Proc. Natl. Acad: Sci. U.S.A. 82: 371~375, 1985
- 33) NAKANO, T. & H. ARITA: Enhanced expression of group II phospholipase A<sub>2</sub> gene in the tissues of endotoxin shock rats and its suppression by glucocorticoid. FEBS Lett. 273: 23~26, 1990